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Abstract: This research work investigates the derivation of a fixed upper matrix
bound for the solution of one class of parameter-dependent Continuous Algebraic
Lyapunov Equations (CALE). It is supposed that the nominal coefficient matrix is
subjected to real structured parametric uncertainty belonging to a convex set. The
bound is used to analyze the robust stability and the performance behavior of a
load-frequency control system for a single area power system model. By means of
the bound one can easily estimate the distance from instability of the uncertain
system and the linear quadratic performance index associated with it. The
applicability of the obtained results is illustrated by an example.
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1. Introduction

The problem of deriving bounds for the solution of the Continuous Algebraic
Lyapunov Equations (CALE) has attracted the interest for more than half a century.
This is due to both theoretical and practical reasons. In some cases, due to the high
order, the direct solution of this equation is impossible, and in other ones, it is
sufficient to have at disposal only some estimates for it. The main difficulty arises
from the fact, that the available upper bounds are valid under some assumed
restrictions imposed on the coefficient matrix. Due to this, valid solution bounds are
possible only for some special subsets of negative stable (Hurwitz) coefficient
matrices. All significant results in the area are summarized and discussed in [9].

The robustness of a linear system, subjected to structured real parametric
uncertainty, belonging to some compact vector set (e.g., the unit simplex), has been
recognised as a key issue in the analysis of control systems [1-6]. The main purpose
of this research is to derive a fixed upper matrix bound for the solution of one class
of parameter-dependent CALEs. Such bounds help to analyze the uncertain system

42



with respect to stability and a quadratic performance index. A state space model
with real data of a single area power system is used as a test example.
The following notations will be used: A > 0 (A > 0) indicates that A is a

positive (semi-positive) definite matrix; «=(;)eR" denotes a real nxl
vector & with nonnegative entries «;, i=1,...,N, and |a| is the sum of its entries;

A2 A7 AT are the square roots (if A is a positive semi-definite), the inverse (if A
is nonsingular) and the transpose of a matrix A; 4, (A), 4y(A) denote the minimal

and maximal eigenvalue of a matrix A with only real eigenvalue, respectively; the
maximal singular value of an arbitrary matrix M (spectral norm of M) is denoted by

o (M) = ﬂL/AZ(MM "); the real part of the i-th eigenvalue of matrix A is
Re A, (A);V is the conjugate transpose of a complex vector v. All matrices are nxn.
The identity matrix is denoted as |. Define also the set of nxn uncertain matrix
polynomials:
N
P={A(@), a=(a)eR": A@a)= A+ZaiA,-, 0<l|a|<1},
i=1

where A, A, i =1,...,N, are some fixed matrices.

2. Preliminaries

Consider the state space model of a linear continuous-time uncertain system:

(1 X=Al@)X, X0)=X,, Ala)eP,
and the associated with it parameter-dependent CALE
(2) AT (@)P(a)+ P(a)A(@)=—Q, Q>0.

From Lyapunov’s stability theorem it follows that if A(cr) is a Hurwitz
(negative stable) matrix for all admissible vectors « , i.e.,
3) s(a) =—-maxRe 4;[A(«)] >0, i=1,.,n,
then P(«)is the unique positive definite solution of (2) for any given positive

definite matrix Q. In this case, the performance of the system can be evaluated by
the index:

4) Ie %) = [ X" (@)Qx(@) = X] Ple),.
0

It is desired to determine parameter independent bounds for the:

(a) positive definite solution P(«) in (2);

(b) distance from the instability S(e) in (3);

(c) system performance index J(«, X,) in (4).

Before that, the following simple results will be presented.

Lemma 1. A symmetric uncertain polynomial X (&) e P is positive definite if
and only if it is positive definite at N + 1 vertices, i.e.,
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(5) X>0, X+X;>0, i=L...,N.
In this case, for the positive scalar

(6) p=max{Ay (QX"), QX +X{)™], i=1.,N},
one has
(7) wX(@)=Q Va.

P roof. Suppose that X (&) is a positive definite polynomial for all ¢ . Then,
the matrix inequalities in (5) must hold, by necessity, which proves the necessity
part. Now, let the set of matrix inequalities (5) holds. Since the sum |a| of the

entries of vector« belongs to the interval [0, 1], there always exists some
nonnegative scalar «,, such that o, + |a| =1. This results in N + 1 matrix
inequalities:

apX >0, o;(X+X;)=0, i=1..,N,
with at least one of them being strict. By summing up the left and right-hand sides
one gets

N
X+Y X, =X(@)>0 Va.
i=1
This proves the sufficiency part and completes the proof of the first statement.
Let X («) be a positive definite polynomial for all o and consider the scalar

defined in (6). Obviously, its choice guarantees that:
Y=uX-Q20, Y+Y;,=uX-Q+uX;20, i=1,..,N.

The application of the same arguments used to prove the first statement, results
in inequality (7).

Lemma 2. Let A(er) be a Hurwitz matrix for all « . If there exists a fixed
symmetric matrix Py, such that
(8) AT(a)Py + PyA(@)<—Q Va,
then Pjis an upper parameter independent matrix bound for the solution P(«) in
(2),1.e., P(@)<Py Va.

P r o o f. If the above inequality holds, having in mind (2), one has:

AT (@)[P, —P(a)]+[P, - P(@)]A(@) <0 Va.
This is possible only if Py —P(a)>0 Ve, in accordance with Lyapunov’s

stability Theorem.

Corollary 1. If the assumptions of Lemma 2 hold, then having in mind the
scalars in (3) and (4), one gets the following parameter independent bounds for the
distance from instability and the performance index of the uncertain system (1):

) S(a)> S=%/‘tn(QF’JI) Va,

(10) J(a, %)) <I(X) =X RyX, Va and Vx,.
Proof Let ydenotes an eigenvector of A(a) corresponding to the
eigenvalue A with the largest real part for all uncertain vectors o, i.e.,
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A(a)y = Ay . Consider the matrix inequality (8) and the associated with it scalar
inequality:
7 Qr <~y TAT(@)Py +PyA@)ly =~(Z 7 Py + 7 Pyy) =
=—2Re(A)y Pyy =25(a)y Pyy.
Note that P; must be a positive definite matrix by necessity. Finally, denoting
@ =PY?y results in the inequality
*5-1/2~p-1/2

P
2 QP =s< LU _<U P o),
20 ¢

This proves the bound in (9). The upper bound (10) is obvious.

3. The power system model

The purpose of operating load-frequency control is to keep the frequency changes
during the load sharing in some desired limits. The main change parameters of a
power system are the rotor angle, the change in frequency and the active power
flow between the connection lines. The linear model given below is taken from [7]
and is sufficient to express the dynamic behavior of the system around the working
point [8]:

AP, = —LAPV —LAf,
7, Rz'g
AP, =LAPV —LAPm,
T T
Af =L ap D i —LAPL,

2H ™ 2H 2H
where the respective parameters have the following physical meanings:
AP,, AP, Af denote the change in a turbine valve position power, turbine

mechanic exit power and frequency, respectively; z,,z; are the speed regulator

g’
time constant and the turbine time constant, respectively; H and D denote the
generator inertia constant and the power system constant. The control input is AP,

and denotes the load change. Using the notations
x=(AP, AP, Af)', u=AP,
the system is put in a standard state space description of an open-loop system:

1, L
Ty Crg 0
X=Agx+bu, Ay = R 0
noom e
o L _D 2H
| 2H 2H |

The following values for the parameters are used:

7, =02s,70 =05 s,C=0.05pu,H =5s,D=0.08.
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The state and control matrices are computed as:

-5 0 -100 0
A=l2 -2 0 | b=| 0
0 0.1 -0.008 ~0.1

Although the open-loop system is stable, a procedure of an optimal linear
quadratic regulator synthesis is suggested via the solution of the algebraic Riccati
equation is as follows:

-Q= AJR+RA, —Rbb"R = (A, —bb"R)" R+ R(A, —bb"R) + Rbb"R =
=(A, —bK)"R+R(A-DbK)+Rbb"R = A'"R+RA+Rbb"R.
The close loop system with a state feedback control law u=—-Kx, K =b"R,
becomes
(11) X =(A,—bK)x = Ax,
where R denotes the Riccati equation solution. The close loop system state matrix A
satisfies Lyapunov-like equation

(12) ATR+RA=-Q, Q=Rbb"R+Q.
The Riccati equation (12) has been solved for
Q =Q, =diag(3,10,7),
Q =Q, =diag(3,7,10),

Q = Q, = diag(7, 3,10).
Respective gain matrices have been computed:
K, =(0.6323 0.3297 -35.5809) =b"R,,

K, =(0.5441 0.1205 —-33.0592)=b'R,,
K, =(0.7364 —0.3402 -38.4281)=b"R,.

Having in mind (11) we want to investigate the robustness properties of the
nominal systems

X=(A —bK)x=AX, s=1,2,3,
by including the action of an additive structured polynomial perturbation, i.e.,

X=Rx+iaiA&ix: A(a)x, A(a)eP, s=1,2,3.

This puts the uncertain system in the form (1) for any given S. A sufficient
condition for its stability is due to Lyapunov’s stability theorem, which in the case
when a fixed Lyapunov function is required, is given by the matrix inequality:

0> A (@)R, +RA(a) = AR, + R A +iai(A§iRs +RA )=
i=1l

N
= Xs +Zaixs,i = Xs(a)-
i=1
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Since X (a)eP,s=1,2,3, having in mind (12), and in accordance with
Lemma 1, this equality has a simple parameter independent solution:
(13) ~X=Q >0, —X¢—Xq;=Q~ AR ~RA; >0, i=L.,N, and s=1,2,3.

LetN=2and
0 00 0 0 1
A,=|1 0 0, A,=0 0 0,
00 0] 0 00
0 0 10] [0 0 20
A,=/0 0 20|, A,=|0 0 10|,
00 0 10 0 0
0 0 0] [0 0 1
A, =[4 0 0, A,=|0 0 0}
0 0 0 0 0 0

All matrices in (13) are positive definite, which guarantees negative
definiteness of X (), stability of the uncertain state matrix A () and of the
system for all s = 1, 2, 3 and for all admissible vectors « .

Next, the computation of the upper matrix bounds for CALEs solution will be
illustrated. Let the right-hand side in the parameter-dependent CALE (2) be the

identity matrix. The scalars £, S =1, 2, 3,1in (6) have been computed as follows:
Hs =max{ly (=X,), Ay[(=X =X s=1,2.3, i=12,
py =max{0.2156, 0.8623, 0.1648} =0.8623 = Ay[(-X; - X;;) '],
fy =max{0.2156, 0.3089, 0.2154} =0.3089 = Ay [(~X, — X5,) '],
4 =max{0.2156, 0.4178, 0.2064} =0.4178 = 4, [(—-X5 — X5,)"'].
According to Lemma 1, one has ,
=12 pX (@) = AT (@)(usR) + (usROA (@) = AT (@)Pys + Pus A (@).
Due to Lemma 2, this means that
0.4102  0.4650 —5.4527

Py, =| 04650 1.9902 —2.8428 |=R,, 4 (Py,)=306.9375,
~5.4527 -2.8428 306.8139 |
0.1323  0.1219 —1.6807 ]

Po, =| 0.1219 05208 —03723 |=u,R,, 4,(Py,)=102.149,
~1.6807 —0.3723 102.1199
03008 0.0774 —3.0768

Pus =| 0.0774 03723 14215 |= 3Ry, 4, (Pys) =160.6242,
~3.0768 1.4215 160.5526
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are respective fixed upper matrix bounds for the parameter-dependent solution of
the CALEs (2) for all « .
From (9) one gets

sl(a)ZSlzéln(Pgll):0.00M Va,
sz(a)ZsZ:%zn(Pg;):o.oo49 Va,

Sy () > S, =%/1n(P[;§) =0.0031 V.

The nominal system state matrix A, is affected by two independent uncertain

parameters, which perturb one entry each, in cases 1 and 3. The number of
perturbed entries in case 2 is two for each parameter. The maximal singular values

of matrices K and Asi,s=1,2,3, and i=1,2, are suitable to express the control

energy expense used to ensure the respective robustness properties of the uncertain
systems.
Case 1. o,(A ) =0,(A,)=10,(K))=35588, s,(a)>0.0016.

Case 2. 0,(A,,) = 0, (A,,) = 22.3607, 0, (K,) = 33.0639 , S, () > 0.0049.
Case 3. 6,(A,,) =4,0,(A;,) =1,0,(K;) =38.4367, s,(a)>0.0031.

The results obtained in case 3 show clearly that the close loop nominal system
is subjected to the largest (in sense of spectral norm) perturbation, the control
energy expense is the smallest one, and the distance from instability of the uncertain
system is the largest in comparison with cases 1 and 3. Also, since

Pya <Pys <Py,

it follows that the upper matrix estimate P, is the tightest one.

An upper estimate for the performance index in (10) can be easily computed
for any given initial state vector.
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