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Abstract: This research work investigates the derivation of a fixed upper matrix 
bound for the solution of one class of parameter-dependent Continuous Algebraic 
Lyapunov Equations (CALE). It is supposed that the nominal coefficient matrix is 
subjected to real structured parametric uncertainty belonging to a convex set. The 
bound is used to analyze the robust stability and the performance behavior of a 
load-frequency control system for a single area power system model. By means of 
the bound one can easily estimate the distance from instability of the uncertain 
system and the linear quadratic performance index associated with it. The 
applicability of the obtained results is illustrated by an example. 
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1. Introduction 

The problem of deriving bounds for the solution of the Continuous Algebraic 
Lyapunov Equations (CALE) has attracted the interest for more than half a century. 
This is due to both theoretical and practical reasons. In some cases, due to the high 
order, the direct solution of this equation is impossible, and in other ones, it is 
sufficient to have at disposal only some estimates for it. The main difficulty arises 
from the fact, that the available upper bounds are valid under some assumed 
restrictions imposed on the coefficient matrix. Due to this, valid solution bounds are 
possible only for some special subsets of negative stable (Hurwitz) coefficient 
matrices. All significant results in the area are summarized and discussed in [9].  

The robustness of a linear system, subjected to structured real parametric 
uncertainty, belonging to some compact vector set (e.g., the unit simplex), has been 
recognised as a key issue in the analysis of control systems [1-6]. The main purpose 
of this research is to derive a fixed upper matrix bound for the solution of one class 
of parameter-dependent CALEs. Such bounds help to analyze the uncertain system 
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with respect to stability and a quadratic performance index.  A state space model 
with real data of a single area power system is used as a test example.  

The following notations will be used: A > 0 (A ≥ 0) indicates that A is a 
positive (semi-positive) definite matrix; N

i R∈= )(αα  denotes a real n×1 
vectorα with nonnegative entries ,,...,1, Nii =α  and α  is the sum of its entries; 

T121 ,, AAA −  are the square roots (if A is a positive semi-definite), the inverse (if A 
is nonsingular) and the transpose of a matrix A; )(),( Mm AA λλ  denote the minimal 
and maximal eigenvalue of a matrix A with only real eigenvalue, respectively; the 
maximal singular value of an arbitrary matrix M (spectral norm of M) is denoted by 

)()( T21
M1 MMM λσ = ; the real part of the i-th eigenvalue of matrix A is 

)(Re Aiλ ; *v is the conjugate transpose of a complex vector v. All matrices are n×n. 
The identity matrix is denoted as I. Define also the set of n×n uncertain matrix 
polynomials: 

},10,)(:)(),({
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≤≤+=∈=≡ ∑
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ii
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where ,,...,1,, NiAA i =  are some fixed matrices. 

2. Preliminaries 

Consider the state space model of a linear continuous-time uncertain system: 
(1)   P∈== )(,)0(,)( 0 αα AxxxAx& ,  
and the associated with it parameter-dependent CALE 
(2)   0,)()()()(T >−=+ QQAPPA αααα . 

From Lyapunov’s stability theorem it follows that if )(αA  is a Hurwitz 
(negative stable) matrix for all admissible vectorsα , i.e., 
(3)   ,,...,1,0)]([Remax)( niAs i =>−= αλα  
then )(αP is the unique positive definite solution of (2) for any given positive 
definite matrix Q. In this case, the performance of the system can be evaluated by 
the index: 

(4)   .)()()(),( 0
T
0

0

T
0 xPxQxxxJ αααα == ∫

∞

  

It is desired to determine parameter independent bounds for the: 
(a) positive definite solution )(αP  in (2);  
(b) distance from the instability )(αs  in (3);  
(c) system performance index ),( 0xJ α  in (4). 
Before that, the following simple results will be presented. 
Lemma 1. A symmetric uncertain polynomial P∈)(αX  is positive definite if 

and only if it is positive definite at N + 1 vertices, i.e., 
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(5)   .,...,1,0,0 NiXXX i =>+>  
In this case, for the positive scalar 

(6)     },,...,1],)([),(max{ 1
M

1
M NiXXQQX i =+= −− λλμ  

one has 
(7)   .)( ααμ ∀≥ QX  

P r o o f. Suppose that )(αX is a positive definite polynomial for all α . Then, 
the matrix inequalities in (5) must hold, by necessity, which proves the necessity 
part. Now, let the set of matrix inequalities (5) holds. Since the sum α of the 
entries of vectorα belongs to the interval [0, 1], there always exists some 
nonnegative scalar 0α , such that 10 =+ αα . This results in N + 1 matrix 
inequalities: 

,,...,1,0)(,00 NiXXX ii =≥+≥ αα  
with at least one of them being strict. By summing up the left and right-hand sides 
one gets   

.0)(
1

ααα ∀>=+∑
=

XXX
N

i
ii  

This proves the sufficiency part and completes the proof of the first statement.  
Let )(αX be a positive definite polynomial for all α and consider the scalar 

defined in (6). Obviously, its choice guarantees that:  
.,...,1,0,0 NiXQXYYQXY ii =≥+−=+≥−= μμμ  

The application of the same arguments used to prove the first statement, results 
in inequality (7).  

Lemma 2. Let )(αA  be a Hurwitz matrix for all α . If there exists a fixed 
symmetric matrix UP , such that 
(8)   ,)()( UU

T ααα ∀−≤+ QAPPA  
then UP is an upper parameter independent matrix bound for the solution )(αP  in 
(2), i.e., .)( U αα ∀≤ PP   

P r o o f. If the above inequality holds, having in mind (2), one has: 
.0)()]([)]()[( UU

T ααααα ∀≤−+− APPPPA  
This is possible only if ,0)(U αα ∀≥− PP  in accordance with Lyapunov’s 

stability Theorem. 
Corollary 1. If the assumptions of Lemma 2 hold, then having in mind the 

scalars in (3) and (4), one gets the following parameter independent bounds for the 
distance from instability and the performance index of the uncertain system (1): 

(9)   ,)(
2
1)( 1

U αλα ∀=≥ −QPss n  

(10)   .and)(),( 00
T
000 xxPxxJxJ U ∀∀=≤ αα  

P r o o f. Let γ denotes an eigenvector of )(αA  corresponding to the 
eigenvalue λ  with the largest real part for all uncertain vectors α , i.e., 
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λγγα =)(A . Consider the matrix inequality (8) and the associated with it scalar 
inequality:  

γααγγγ )]()([ UU
T** APPAQ +−≤ =+−= )( U

*
U

** γλγγγλ PP  
γγλ U

*)Re(2 P−= .)(2 U
* γγα Ps=  

Note that UP  must be a positive definite matrix by necessity. Finally, denoting 
γϕ 21

UP=  results in the inequality  
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This proves the bound in (9). The upper bound (10) is obvious.  

3. The power system model 

The purpose of operating load-frequency control is to keep the frequency changes 
during the load sharing in some desired limits. The main change parameters of a 
power system are the rotor angle, the change in frequency and the active power 
flow between the connection lines. The linear model given below is taken from [7] 
and is sufficient to express the dynamic behavior of the system around the working 
point [8]: 
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where the respective parameters have the following physical meanings: 
fPP ΔΔΔ ,, mv denote the change in a turbine valve position power, turbine 

mechanic exit power and frequency, respectively; Tg , ττ  are the speed regulator 
time constant and the turbine time constant, respectively; H and D denote the 
generator inertia constant and the power system constant. The control input is LPΔ  
and denotes the load change. Using the notations  

( ) ,, L
T

mv PufPPx Δ=ΔΔΔ=  
the system is put in a standard state space description of an open-loop system: 
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The following values for the parameters are used: 
.08.0s,5pu,05.0,s5.0,s2.0 Tg ===== DHCττ  
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The state and control matrices are computed as: 
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Although the open-loop system is stable, a procedure of an optimal linear 
quadratic regulator synthesis is suggested via the solution of the algebraic Riccati 
equation is as follows: 

RRbbRARAQ T
0

T
0

~
−+=− =+−+−= RRbbRbbARRRbbA TT

0
TT

0 )()(  
RRbbbKARRbKA TT

0 )()( +−+−= .TT RRbbRARA ++=  
The close loop system with a state feedback control law ,, T RbKKxu =−=  

becomes 
(11)   AxxbKAx =−= )( 0& , 
where R denotes the Riccati equation solution. The close loop system state matrix A 
satisfies Lyapunov-like equation 
(12)   QRRbbQQRARA ~, TT +=−=+ . 

The Riccati equation (12) has been solved for 
),7,10,3(diag~

1 ==QQ  
),10,7,3(diag~

2 ==QQ  
).10,3,7(diag~

3 == QQ  
Respective gain matrices have been computed:  

( )5809.353297.06323.01 −=K  = ,1
T Rb  

( )0592.331205.05441.02 −=K = ,2
T Rb  

( )4281.383402.07364.03 −−=K = .3
T Rb  

Having in mind (11) we want to investigate the robustness properties of the 
nominal systems   

,3,2,1,)( 0 ==−= sxAxbKAx ss&  
by including the action of an additive structured polynomial perturbation, i.e., 

.3,2,1)(,)(
1

, =∈=+= ∑
=

sAxAxAxAx ss

N

i
isis P,ααα&  

This puts the uncertain system in the form (1) for any given s. A sufficient 
condition for its stability is due to Lyapunov’s stability theorem, which in the case 
when a fixed Lyapunov function is required, is given by the matrix inequality: 

)()(0 T αα ssss ARRA +> =+++= ∑
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Since 3,2,1,)( =∈ sX s Pα , having in mind (12), and in accordance with 
Lemma 1, this equality has a simple parameter independent solution:  
(13)  .3,2,1and,,...,1,0,0 ,

T
,, ==>−−=−−>=− sNiARRAQXXQX isssississss   

Let N = 2 and  
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All matrices in (13) are positive definite, which guarantees negative 
definiteness of )(αsX , stability of the uncertain state matrix )(αsA  and of the 
system for all s = 1, 2, 3 and for all admissible vectors α .  

Next, the computation of the upper matrix bounds for CALEs solution will be 
illustrated.  Let the right-hand side in the parameter-dependent CALE (2) be the 
identity matrix. The scalars ,3,2,1, =ssμ in (6) have been computed as follows: 

,2,1,3,2,1],)[(),(max{ 1
, ==−−−= − isXXX issMsMs λλμ  

],)[(8623.0}1648.0,8623.0,2156.0max{ 1
1,11M1

−−−=== XXλμ  
],)[(3089.0}2154.0,3089.0,2156.0max{ 1

1,22M2
−−−=== XXλμ  

].)[(4178.0}2064.0,4178.0,2156.0max{ 1
1,33M3

−−−=== XXλμ  
According to Lemma 1, one has  

)(αμ ss XI ≥− )()())((T αμμα ssssss ARRA += ).()( UU
T αα ssss APPA +=  

Due to Lemma 2, this means that  

,9375.306)(,
8139.3068428.24527.5
8428.29902.14650.0
4527.54650.04102.0

1U1111U ==
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−
−

= PRP λμ  

,149.102)(,
1199.1023723.06807.1
3723.05208.01219.0
6807.11219.01323.0

2U1222U ==
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−
−

= PRP λμ  

,6242.160)(,
5526.1604215.10768.3

4215.13723.00774.0
0768.30774.03008.0

3U1333U ==
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−
= PRP λμ  



 48

are respective fixed upper matrix bounds for the parameter-dependent solution of 
the CALEs (2) for all α .  

From (9) one gets 

,0016.0)(
2
1)( 1

1U11 αλα ∀==≥ −Pss n  

,0049.0)(
2
1)( 1

2U22 αλα ∀==≥ −Pss n  

.0031.0)(
2
1)( 1

3U33 αλα ∀==≥ −Pss n  

The nominal system state matrix 0A is affected by two independent uncertain 
parameters, which perturb one entry each, in cases 1 and 3. The number of 
perturbed entries in case 2 is two for each parameter. The maximal singular values 
of matrices sK and ,2,1and,3,2,1,, == isA is  are suitable to express the control 
energy expense used to ensure the respective robustness properties of the uncertain 
systems.  

Case 1. 588.35)(,1)()( 112,111,11 === KAA σσσ , .0016.0)(1 ≥αs  
Case 2. 0639.33)(,3607.22)()( 212,211,21 === KAA σσσ , .0049.0)(2 ≥αs  
Case 3. ,4367.38)(,1)(,4)( 312,311,31 === KAA σσσ  .0031.0)(3 ≥αs  
The results obtained in case 3 show clearly that the close loop nominal system 

is subjected to the largest (in sense of spectral norm) perturbation, the control 
energy expense is the smallest one, and the distance from instability of the uncertain 
system is the largest in comparison with cases 1 and 3. Also, since  

,1U3U2U PPP <<  
it follows that the upper matrix estimate 2UP  is the tightest one. 

An upper estimate for the performance index in (10) can be easily computed 
for any given initial state vector. 
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